Để tính đạo hàm của hàm phân thức hữu tỉ thì chúng ta dùng công cộng một công thức:
Bạn đang xem: Cách tính đạo hàm của hàm phân thức dễ nhất chính xác
$\left(\dfrac{u}{v}\right)’=\dfrac{u’.v-u.v’}{v^2}$
Một số dạng đặc trưng của hàm phân thức:
$ \left (\dfrac{1}{x}\right)’=\dfrac{-1}{x^2}$; $ \left (\dfrac{1}{u}\right)’=\dfrac{-u’}{u^2}$
Tuy nhiên cũng đều có một số trong những hàm phân thức tất cả chúng ta rất có thể dùng những công thức tính đạo hàm thời gian nhanh. Thầy tiếp tục rằng rõ ràng vào cụ thể từng dạng bên dưới nhé.
Các em coi tăng bài bác giảng:
- Cách tính đạo hàm của hàm căn thức
- Cách tính đạo hàm của hàm số hợp
- Cách tính đạo hàm của nồng độ giác
- Cách tính đạo hàm của hàm số logarit
1. Đạo hàm của hàm phân thức bậc 1/ bậc 1
$y=\dfrac{ax+b}{cx+d}$
Công thức tính thời gian nhanh đạo hàm: $y’=\dfrac{ad-bc}{(cx+d)^2}$
Ví dụ 1: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{2x+3}{4x+2}$
b. $y=\dfrac{-x-2}{2x+5}$
Hướng dẫn:
a. $y=\dfrac{2x+3}{4x+2}$
=> $y’=\dfrac{(2x+3)’.(4x+2)-(2x+3).(4x+2)’}{(4x+2)^2}$
=> $y’=\dfrac{2(2x+2)-(2x+3).4}{(4x+2)^2}$
=> $y’=\dfrac{8x+4-8x-12}{(4x+2)^2}$
=> $y’=\dfrac{-8}{(4x+2)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{2.2-3.4}{(4x+2)^2}$ => $y’=\dfrac{-8}{(4x+2)^2}$
b. $y=\dfrac{-x-2}{2x+5}$
=> $y’=\dfrac{(-x-2)’.(2x+5)-(-x-2)(2x+5)’}{(2x+5)^2}$
=> $y’=\dfrac{-1.(2x+5)-(-x-2).2}{(2x+5)^2}$
=> $y’=\dfrac{-2x-5+2x+4}{(2x+5)^2}$
=> $y’=\dfrac{-1}{(2x+5)^2}$
Sử dụng công thức thời gian nhanh tính đạo hàm:
$y= \dfrac{-x-2}{2x+5}$ => $y’=\dfrac{(-1).5-(-2).2}{(2x+5)^2}=\dfrac{-5+4}{(2x+5)^2}=\dfrac{-1}{(2x+5)^2}$
2. Đạo hàm của hàm phân thức bậc 2/ bậc 1
$y=\dfrac{ax^2+bx+c}{dx+e}$
Công thức tính thời gian nhanh đạo hàm: $y=\dfrac{adx^2+2aex+be-cd}{(dx+e)^2}$
Ví dụ 2: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{x^2+2x+3}{4x+5}$
b. $y=\dfrac{2x^2+3x-4}{-5x+6}$
Hướng dẫn:
a. $y’=\dfrac{(x^2+2x+3)’.(4x+5)-(x^2+2x+3)(4x+5)’}{(4x+5)^2}$
=> $y’=\dfrac{(2x+2).(4x+5)-(x^2+2x+3).4}{(4x+5)^2}$
=> $y’=\dfrac{8x^2+18x+10-4x^2-8x-12}{(4x+5)^2}$
Xem thêm: 3 nàng Hậu Vbiz sở hữu cơ bụng săn chắc với rãnh số 11 quyến rũ thách thức mọi kiểu trang phục
=> $y’=\dfrac{4x^2+10x-2}{(4x+5)^2}$
Sử dụng công thức giải thời gian nhanh đạo hàm:
$y’=\dfrac{1.4x^2+2.1.5x+2.5-3.4}{(4x+5)^2}=\dfrac{4x^2+10x-2}{(4x+5)^2}$
b. $y’=\dfrac{(2x^2+3x-4)’.(-5x+6)-(2x^2+3x-4).(-5x+6)’}{(-5x+6)^2}$
=> $y’=\dfrac{(4x+3).(-5x+6)-(2x^2+3x-4).(-5)}{(-5x+6)^2}$
=> $y’=\dfrac{-20x^2+9x+18-(-10x^2-15x+20)}{(-5x+6)^2}$
=> $y’=\dfrac{-20x^2+9x+18+10x^2+15x-20)}{(-5x+6)^2}$
=> $y’=\dfrac{-10x^2+24x-2}{(-5x+6)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{2.(-5)x^2+2.2.6x+3.6-(-4)(-5)}{(-5x+6)^2}=\dfrac{-10x^2+24x-2}{(-5x+6)^2}$
3. Đạo hàm của hàm phân thức bậc 2/ bậc 2
$y=\dfrac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}$
Công thức tính thời gian nhanh đạo hàm của hàm phân thức bậc 2/ bậc 2
=> $y’=\dfrac{(a_1b_2-a_2b_1)x^2+2(a_1c_2-a_2c_1)x+b_1c_2-b_2c_1}{(a_2x^2+b_2x+c_2)^2}$
Ví dụ 3: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{x^2+x-2}{-x^2+3x+2}$
Ta có:
$y’=\dfrac{(x^2+x-2)’.(-x^2+3x+2)-(x^2+x-2).(-x^2+3x+2)’}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{(2x+1).(-x^2+3x+2)-(x^2+x-2).(-2x+3)}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{-2x^3+6x^2+4x-x^2+3x+2+2x^3-3x^2+2x^2-3x-4x+6}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{4x^2+8}{(-x^2+3x+2)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{[1.3-1.(-1)]x^2+2[1.2-(-2)(-1)]x+[1.2-(-2).3]}{ (-x^2+3x+2)^2 }$
=> $y’=\dfrac{4x^2+8}{(-x^2+3x+2)^2}$
4. Một số tình huống đặc trưng Lúc tính đạo hàm của hàm phân thức
Ví dụ 4: Tính đạo hàm những hàm số sau:
a. $y=\dfrac{2}{x^2-2x+3}$
b. $y=\left(\dfrac{x+2}{3x-1}\right)^3$
Hướng dẫn:
a. $y’=\dfrac{-2.(x^2-2x+3)’}{(x^2-2x+3)^2}=\dfrac{-2(2x-2)}{(x^2-2x+3)^2}$
b. $y’=3.\left(\dfrac{x+2}{3x-1}\right)^2\left(\dfrac{x+2}{3x-1}\right)’= 3.\left(\dfrac{x+2}{3x-1}\right)^2.\dfrac{-7}{(3x-1)^2} $
(ý này chúng ta vận dụng công thức đạo hàm $u^{\alpha}=\alpha.u^{\alpha-1}.u’$ nhé)
Bài giảng bên trên cũng tương đối cụ thể và không thiếu về những dạng toán tính đạo hàm của một số trong những hàm phân thức hữu tỉ. Nói bọn chúng nhằm tính được đạo hàm dạng này thì chúng ta chỉ việc dùng công cộng độc nhất một công thức $(\dfrac{u}{v})’$ là rất có thể tính tự do rồi. Nếu chúng ta nhận thêm công thức tính này hoặc thì nên share bên dưới khuông comment nhé.
SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ
Xem thêm: Tháng 9 Âm: Ai xui mặc ai 3 tuổi này chuyển mình rực rỡ, công danh thăng tiến, chẳng thiếu tiền tiêu
Bình luận